The genesis of the Jaguar V8

There was a time when ‘Jaguar’ and ‘V8’ could not be uttered in the same breath, which is odd when you consider the majesty of the Daimler 2.5 and 4.5 V8s used since the ’60s.

But by the end of the ’80s it was becoming clear that the weight of the gorgeous Jaguar

Potent as the V12 was, it weighs about 350kg on its own! As I found out when I built this XJ-S...

V12 was just too much, plus its enormous physical size was hampering car design, particularly for crash performance where you need some crumple zone rather than solid engine. The engine was revolutionary in the ’70s, but in the ’80s the labour intensive assembly and expensive parts was costing the company more than it was making. For the last years of the XJS the V12 was not even on the official brochures, it was only its legend that was keeping sales alive.

The AJ6 and AJ16 6 cylinder engines were making almost the same power and saved about 120kg which made a huge difference to the cars handling. But even this engine was showing its age.

New shorter engines were needed in order to allow sufficient room for an effective crumple zone. The engines needed to warm up more quickly, for both customer comfort and the ever tightening emissions regulations. This needs more precise cooling in the heads and block plus the use of considerably less metal. The piston ring system needed to control the oil much more accurately and piston friction had to be lowered. Indeed, friction throughout the engine needed to be reduced to meet the fuel economy and emissions targets.

With these issues in mind, a number of alternatives were looked at in the late ’80s, including a V12 derived V6 with the lost power being returned by using a brace of turbos. Another V6, an Orbital 2 stroke engine which gave the same number of power strokes per rev as the old V12 engine, was looked at but oil control and refinement never quite met the targets. They even looked at a number of engines from other companies, which could be bought in without the huge cost of developing their own engine.

During the dreaded BL days there had been some discussion of using the Buick derived Rover V8, which had substantial advantages in terms of weight (in fact it weighed half as much as the V12), cost and size. Unfortunately, most of the advantage came from the fact that it was relatively thin walled and so suffered in refinement a little. But in reality this could have been developed out, as was the case in the final fling of the Rover V8 inside the P38a Range Rovers.

But that venerable V8 was itself a relic of the ’60s and ultimately suffered from the same issues as the old Jaguar engines, in terms of efficiency and emissions. It also struggled to meet the power demands of modern cars, the 4.6 version only putting out 220bhp.

So the bold decision was made to design a completely new Jaguar engine, one that would meet the forthcoming challenges of regulations and customer expectations. Originally code named the AJ12, the project used a single cylinder research engine to examine a number of different combustion chamber, cylinder head/ port and cam options. This data showed that a 500cc cylinder with 26 degree ports and a four valve configuration gave the best economy and performance for Jaguar applications.

Although AJ12 never resulted in a physical engine, the data was used to study a modular engine design concept, concentrating on a 4 litre 8 cylinder and a 3 litre 6cyl, but also looking at a 2 litre 4 cylinder, a 5 litre 10 cylinder and a 6 litre 12 cylinder engine. This would require some rather sophisticated machinery to be able to make all those variants, sharing common components such as piston and valves but little else. As the analysis data grew, it became clear that the complexity of doing all those variants would be crippling, so it was decided to concentrate on 6, 8 and 12 cylinder V engines. Thus the project now became known as AJ26, 26 being the sum of 6, 8 and 12.

The Jaguar V8 would also make a damn fine race engine...

 

But this would be hugely expensive, the fuel bill alone for testing engines runs into millions of pounds per year. At this time Jaguar was privately owned and as such there was simply not enough spare cash to invest in new products. What was needed was an owner who could suffer the financial hit in the long period between investment and return.

When Ford became interested in buying Jaguar, it was only natural to see if one of their many engines would fit the bill. Indeed it was not uncommon for Jaguar owners in the USA to retro fit a Yank V8 so there was some precedence for this already.

But work had already started on the fledgling Jaguar V8 and the Whitley team, lead by Dave Szczupak, were passionate about seeing it through, they had looked at all the requirements and designed something that would give the legendary levels of Jaguar refinement and power whilst being small, light and efficient. But there would be a long road to go, from a concept to a fully customer ready production engine. Typically it takes around 7 years, that’s a long time to ask an investor to wait for a return.

Ford looked at the arguments for both Ford engines and for the new Jaguar engines, after all the data was analysed and the requirements understood, they decided to invest the millions needed by Jaguar to make their own new engine. But this would be dedicated tooling for just the V8, all other variants were not to be.

The first year had been largely given over to defining the requirements, the specifications for each part of the engine such as how much heat goes into the coolant and the oil, how much force is needed to turn the engine over, valve train stiffness, noise levels as well as the major things like the power and torque levels.

This had lead to the basic design, this was put into the new computers and virtual tests run to establish the best coolant flow paths, the best inlet and exhaust port shape, the cam profiles and the such. A huge amount of data was produced and analysed, without making a single engine. Somewhat different to the early days of the V12 when development was a matter of calculated guess work and then lots of test engines trying it all out.

The calculation gave most of the answers, but some elements still required real world testing. To this end some elements of the new engine were experimented on in isolation, using a current production ‘slave’ engine as a base, giving rise to some odd reports in the press of the new engine being based on this that and the other engine. For example, in order to try different bore and stroke combinations on the single cylinder rig, the engineers looked about for existing parts from all sorts of manufacturers, at one point it was using a Peugeot piston and a Mazda con rod!

The first V8 engines were run on test beds in late ’89 and the first car to receive one was an XJ-S, one of the cars that had just finished being used to evaluate the twin turbo AJ16 in fact. As is always the way with the first ever engine installation, nothing fits, mounts, hoses, air intake and exhaust manifolds all had to be fabricated for the job. Steve, one of the mechanics on the job, recalls ‘they gave me a bag full of exhaust tube and various bends and told me to get on with it’. At the end of ’90, after a couple of weeks of trial and error fitting work the first 4 litre V8 Jag burbled into life and was universally admired by the small select audience of management privileged enough to see it, particularly in America which was a crucial market.

It weighed about the same as the old 6 cyl but had more power and a greater spread of torque, thanks to the new variable cam timing system. But there was a small problem, it didn’t sound like a ‘Jaguar’. Although very appealing, the V8 burble sounded like any normal mid size car in the USA and part of the Jaguar magic was the very high levels of refinement and quietness. Sound is such an emotive thing and much debate was had as to what the new engine should sound like, eventually the decision was made to make it quiet and an enormous amount of work went into designing complex intake and exhaust systems. It is interesting to note how this has changed now such that the current XKR even has a device built into the bulkhead to help you hear the engines magnificent growl.

The first car I drove with the new V8 was an XJ40 in about ’93 at the Ford research centre in Dunton, Essex. The car was based on the XJ12 body, code namedXJ81, which had completely new metal work in front of the bulkhead in order to accept a V engine. This car was bristling with new technology, it had one of the first electronic throttle systems and this particular car had a manual gearbox but with an automatic clutch. As you shifted gear the systems would move the throttle and clutch so as to give you smooth gear shifts. It was marvellous to drive but ultimately it was easier to just use one of the excellent ZF 5 speed auto gearboxes instead.

Its interesting to note how Jaguar has had a history of technological innovation, and how right from the start Jaguar was showing Ford new things. In return Ford showed Jaguar how to massively improve production processes, improving quality and reducing costs. This relationship is continuing to this day, I am pleased to say, with both sides benefiting.

As the engine developed, the early tunes were used to check and refine the basic performance and emissions characteristics. Then cars were used to tune the transient response, that is to say how the engine responds to acceleration, deceleration and gear shifts. This is always a very difficult balance between good drivability and good emissions, a slightly rich fuelling on acceleration give very good drivability but will fail emission completely on hydrocarbons alone.

The new XK was launched with the revised 4.2 V8, a swansong for the first generation V8.

 

Part of the solution was to ensure the automatic gearbox control system ‘talked’ to the engine control system. This kept the throttle, fuel and spark precisely in tune with the change in engine speed during the shift, allowing the engine to anticipate the changes rather than have to react to them after the fact.

After the engine had received a good stable tune, it was time to test it in all the harsh climates it would face in the real world. Traditionally this involves driving it in the Arctic and in the deserts of Arizona or Africa. But now tests could also be done in Fords climatic test chambers which drastically cuts down the development time and expense. As well as cold and hot climate tests, the new cars had to be tested in extremes of damp to check the corrosion resistance of the components and all the wiring. Then there is the rough road testing, both on specially prepared test track with a range of harsh surfaces, and on shake rigs where computer controlled hydraulic rams try to shake the car to pieces. In short, a lifetime of use and abuse is concentrated into a matter of months. By the end of ’94 a huge amount of data had been produced and all the necessary changes had been made, the results were looking very good indeed.

After this year of climate and durability tests, the final tweaks could be made and then it was time to start running the cars at government approved test centres to get the various certifications needed to sell a new car. At the same time further tests were re-run in house just to confirm that the final version was working as expected.

In parallel to all this development, the production plant was tooling up. First prototype tooling is made and the whole assembly process is tested, any special tools or assembly methods are identified and the first set of workers are trained. The first few test cars were built this way, as were the cars eventually used for the journalists to drive at the launch in ‘95.

The cost of production tooling is huge, the Bridgend AJV8 plant cost Ford £125 million. So it was vital to be certain that everything was right before the orders were placed, this could only happen when all the test data was in and all the tweaks had been tested. This is still true today and is one of the reasons it takes so long to get a new idea into production.

Land Rover with Jaguar V8 power, a rather good combination in my opinion.

 

So, in ’96, seven years after the project started, the first XK8s were sold with the all new, entirely Jaguar, V8 engines. A new era had begun.

The original 4.0 litre V8 went through many detail revisions, and endured the dreded Nickasil debarkle that struck many alluminium bored engines of that era. All the lessons learnt were rolled out together in the later 4.2 litre version of the engine, this unit has a reputation for toughness as well as performance and has been raced with some success too. When Land Rover joined the group it was a natural choice to replace the less than reliable BMW V8 with the trusty and powerfull Jaguar unit. In Discovery it was stretched to 4.4 litres in naturally aspirated form but was left at 4.2 for the supercharged variant, 400bhp seemed perfectly sufficient for a Range Rover back then…..

As with all technology in this rapidly changing modern world, eventually it needed a rethink to regain ground lost to competitors who had brought out engines with the latest innovations. The very name ‘Jaguar’ conjures thoughts of tradition and heritage, but it is easy to forget that a fundamental part of that tradition and heritage is innovation; pushing the boundaries back and surprising the car-buying public. In the 70s and 80s, arguably they made the world’s only mass production V12, and at its launch the XJ6 set new standards in refinement and performance coupled with superb looks and all at a very reasonable price. And whatever you may personally think of the XJ-S, it was a very bold move and still has a very strong following.

The all new AJ-V8 GenIII five litre V8 engine demonstrates the continuation of that innovative tradition, capable of delivering over 500 bhp in a selection of very civilised luxurious cars. And as a demonstration of the engine’s strength, a basically standard engine, a tad over-boosted in a slightly modified XF-R was driven at 225.6 mph on the iconic Bonneville salt flats, faster than the XJ220 super car.

It is interesting to draw a comparison with the magnificent old Jaguar V12, intended to provide approximately 20% greater performance than the 4.2 XK six cylinder engine of the time.

In a similar way, the new AJ-V8 5 litre replaces the 4.2 V8, and pushes power levels up by similar amounts; from 420 to 510 bhp for the R version. However, some things are radically different this time round; the new larger engine manages the rather impressive trick of being significantly more economical than the engine it replaces. An astonishing achievement but absolutely essential in today’s, also radically different, environment.

The V12 was also very advanced for a road car engine at the time, in both its concept and manufacture; it was all alloy and designed for fuel injection from the outset, although they were forced to run carburettors temporarily on the E Type. By comparison the new V8 also uses the latest materials and sports an advanced fuel injection system which heavily influenced the engine design, specifically the cylinder heads with a central fuel injector in each combustion chamber.

From E Type to XJ supercharged 5.0 V8, innovation lives on.

 

The injection concept was proved out before any prototypes were made, on a highly modified current production engine taken out to 4.5 litres. The first real prototype engines were created in 2004 and were immediately and relentlessly tested in engine dynamometers, where each engine can be tested in isolation under precisely controlled conditions. Some engines did specific tests such as trying to deliberately foul the spark plugs, or push the performance limits, and others were run on durability cycles designed to stress components to the max, many a time I walked past a test cell where the exhaust manifolds were glowing bright orange as an engine was run at full tilt.

It is of course the people that really make a company, such as the crack team of expert technicians who build and prepare engines ready for testing, often covered with so much complex test equipment that the engine is totally obscured. Or the chaps in the dedicated powertrain machine shop, a small room packed with tools to weld, cut and machine almost any component, often at short notice, using a mix of the ultra new and the traditional techniques that have served Jaguar engine development for many decades. Research by its very nature involves the unforeseen and as a team, their resourcefulness and creativity has saved many a day. It is the talents of dedicated people like this that form the ‘DNA’ of the company.

After initial assessment of the engines, it soon became clear that the naturally aspirated version would meet its performance targets with ease, something that is quite rare in the rest of the car industry, and the supercharged version could exceed expectations without effort so the original power target was raised from 500 to 510 bhp.

The first car I drove with a prototype engine, in 2007, was one of the first engineering ‘hacks’ and so the engine tune was still splendidly raw. It is from this point that skilled engineers start refining the car’s response, making the car do what the driver wants rather than just reacting to crude mechanical inputs. Before work could begin, this particular car had to be driven from Gaydon, where it had been assembled, to Whitley for testing. As I was making that journey myself I volunteered to take the test car, unfortunately it was pouring with rain and as yet there was no traction control – this lead to a few moments of unintentional entertainment and a degree of sideways progress, but even at that embryonic stage it was still a wonderful car to drive.

Indeed it is an essential part of the vehicle’s development to test drive in every type of likely environment so that the design can be finalised before test cars are sent for official emissions certification all over the world. So cars are out and about with disguise kits on years before launch, trying to avoid the hoards of press photographers camped out in the hedges near the factory. Whenever ‘spy shots’ of a new car are printed, it’s standard practice to work out who was driving and then mock them mercilessly, although sometimes it can land the driver in real trouble if more is revealed than is wise.

As ever, refinement is an essential Jaguar characteristic and this has been achieved by ensuring the moving parts are perfectly balanced in the traditional manner, but also with the new Gasoline Direct Injection (GDI) system, where the fuel is forced directly into the combustion chamber at very high pressure. It controls combustion in such a way as to minimise vibration and noise, effectively by shaping the way the cylinder pressure rises, as well as reducing emissions, better fuel economy and higher performance as if the system raises the fuels octane rating. The whole engine is designed round the system and a lot of hard work ensures all the different factors work in harmony, from the computer synchronised high pressure pumps to the crystal operated injectors that give a sequence of perfectly formed fuel pulses.

An experimental race vehicle recieves the new 5.0, light and strong with a tuning potential well above 600bhp.

 

The technology has near magical control, when you hit the start button the engine will synchronise, analyse the current air and coolant temperature, check the oil level and temperature, check all the sensors are working, set the fuel pressure on the twin double-acting high pressure pumps, check and adjust throttle angle, set all four cam positions, charge up the ignition coils and the 160 volt injector control circuit and be ready to fire the first cylinder within one revolution of the engine.

And it’s not just the engine that makes for a stunning drive; the gearbox is a lighter yet stronger version of the ZF 6 speed which works in a detailed and complex harmony with the engine, exchanging data and requests in a high speed electronic conference. For instance – when changing gear the gearbox asks the engine to adjust power to balance the kinetic energy left in the drive train and so removing any cause for a jolt or surge, it all happens in a fraction of a second, all for your driving pleasure.

It’s all very impressive stuff and a million miles away from the possibilities available nearly 20 years ago when the design of the last V8 started. The sheer volume of work that goes into the new engine merits a celebration: so for the privileged few of you who get to drive one of these wonderful cars, please take a moment to look under the bonnet, a lot has gone into that modest space.

Fault codes and conspiracy

I was hearing about some chap who ran his car on Biodiesel and had a few engine problems, the engine would loose power and display the legendary ‘Check Engine’ light prompting him to take it to a dealer to have the fault codes read. There were many fault codes set, mainly due to various blockages, which lead the dealer to change a number of expensive components that in truth were perfectly ok. His conclusion was that

The check engine light, lack of knowledge can lead to bad interpretation and expense.

manufacturers must design the fault detection system to generate revenue from needless parts sales, this is of course complete cobblers, not least because manufacturers always loose heavily when any part is changed under warranty. But also bear in mind that thousands of us Engineers work developing these systems and on the whole we are not a bunch of psychopathic con artists with a hatred of the driving public! On the contrary, most of us are car enthusiasts and obsessed with doing thing right.

So how did this bloke end up in that situation, and what strange sequence of events led him to his disparaging conclusion?

Well, Biodiesel made to BS 14214 contains a fairly high amount of solvents which can cause issues

in cars that have run on ordinary diesel for some time. Wax and other deposits can build up a bit like those fatty deposits you get inside dishwasher drains, but the solvents in biodiesel clean out the tank and fuel lines causing the debris to float off and block the fuel filter (which is only doing its job). Common practice when deciding to run on biodiesel is to fit a new filter first, run the car for a short time to flush things through and then fit another filter; they generally cost only a few pounds. But on this car that wasn’t done and the fuel flow became restricted so when the demand was high the engine would loose fuel pressure and reduce the power level to compensate, to the driver the car drove normally until accelerating hard to overtake when it would suddenly loose power.

Be careful what you put in the tank, cheap fuel can cause expensive repairs.

A fuel pressure fault would be flagged but international fault code listings are, by their very nature, quite generic which works well for most problems, but in this example the system would only be able to detect that the fuel system pressure had dropped as the demand increased when he was overtaking. As soon as the engine had been restarted the pressure would return.

Once the engine has been restarted a few times the system must assume the fault has been repaired, as there are big penalties for manufacturers if their cars keep flagging false warnings, and so by the time the diagnostics tool was plugged in the codes may have been cleared automatically. So when our chap went to the dealer there would be no trace of the fault code for de-rating, just some ones about fuel pressure which lead to the dealer mistakenly replacing the fuel pump at great expense which obviously would not cure the blocked filter. The customer took the car away and unsurprisingly the same problem occurred, so he took it back to the dealer.

In this case the dealer stated that as well as the generic codes there are manufacturer specific codes that can only be read by the manufacturers own diagnostic equipment, so the system was hiding information and it wasn’t their fault. This is unfortunately what started the conspiracy theory!

Manufactureres spen millions testing engines in all conditions to eradicate faults.

Manufacturer-specific fault codes are there as an extra layer of sophistication and reflect aspects of the engine system design that are unique to that manufacturer and that particular type of engine. They are even more open to misinterpretation which is why car companies are keen to only give them to people who have been properly trained. So yes; there is a separate fault list, but it’s not some secret conspiracy, just a reflection of the very high complexity of modern control systems.

It could well be that the garage personnel had difficulty understanding the diagnostics which is entirely understandable as the systems are hugely complex and every car is different. Not only that, but the technology is changing all the time, so having an understanding of common systems available five years ago is of very little use on cars of today. This complexity is driven by emissions legislation, safety requirements and customer demands whilst reducing costs, it is done out of necessity. Modern engine management is one of the most complex and demanding control systems commercially produced, and yet this feat is hardly recognised, which is a shame.

Its complicated enough without conspiracy theories.

So the moral of the story is two fold; there is a skill to interpreting fault codes and they need to be used in conjunction with traditional fault diagnostic techniques (ie: if there is not enough fuel getting through, check for blockages!), and manufacturers don’t design in faults deliberately, it’s hard enough as it is!

Car faults in perspective: What can possibly go wrong….again..

One in a million.
My boss told me “so that means your design will defiantly kill two people per year!”.
That was 20 years ago, when I was a fresh faced engineering graduate in my first job at a global car maker. I was designing bits of engine management system, and as ever I had gone through every type of conceivable failure and worked out how well it was protected against. But one very obscure scenario involved the car stalling on a hypothetical level crossing near a strong radio transmitter, a bit tenuous but it is a situation that could happen, I had gone through the figures and worked out that it was a million to one chance that the engine would not restart, resulting in something bad involving a train and sudden localised distortion to the car (ok, a crash).
I thought that this was a remote chance, but my then boss pointed out that the systems would be put on about 2 million cars per year in Europe, hence his terminal conclusion.
I redesigned it. No one had to die.

Cars made in high volumes are used in every sort of environment possible, testing for all occurances is a huge investment.

But even so, I am sure there could be even more obscure situations I had never even thought of, I probably could have spent years going through more and more complex scenarios, but the the car would never have been made. So we have to draw the line somewhere.

How common are uncommon faults?
Cast your mind back to Toyota’s ‘sticky pedal’ problem, millions of cars work fine yet a handful of unverified complaints necessitated a total recall. You just can’t take chances, even if almost every car is perfect.
Of course Toyota are no worse than Ford, Mercedes and all the rest, all volume products suffer from occasional problems, largely due to the scale of production and of course because we want our complex cars dirt cheap, and that’s not going to change any time soon.
When an industry has to make very complicated machines with highly sophisticated features that are used by the general public who have only minimal training, and have to endure a vast array of harsh environments including salt spray, Arctic freeze, road shocks and days on end in scorching sun, things are going to be difficult. And when this problem is massively compounded by having to make the car as cheap as possible, something has to give.

New ideas like this Rolls Royce EV undergo a huge amount of testing before any customer is allowed near it.

Times this set of problems by the millions of cars made every year and the law of averages is definitely not on the side of car makers. If you think about it, the mere fact that when something does go wrong it makes the headlines tells us something about the utterly fantastic job that all these companies usually do.
If the average Joe knew anything of the vast amount of sheer hard work that goes into creating cheap, economical, useful and reliable cars they would bow down in reverence, and those that fancy their chances at suing for spurious accidents would hang their head in shame.
But hardly anyone knows about all that fantastic engineering work, it doesn’t make sexy TV programs, it’s not vacuous and glamorous enough to make it into the glossy magazines. So every one just accepts that every machine should work perfectly no matter what, and are utterly surprised on the very rare occasion that it doesn’t.
So how often do things fail? Well things are much more likely to go wrong when any product is either new or reaching the end of its designed life, the first few miles a car experiences show up any glitches in production and then once these are sorted most modern cars will trundle on for over a decade without significant problems (assuming its correctly maintained). During the cars early life car makers measure things in returns per thousand and generally they run well below 5, that’s 0.5% of cars having any sort of fault at all in the first year of ownership. Good models will run at less than 0.005%, and these faults could be anything from a cup holder breaking to an engine failing. The trouble is that if you churn out a couple of million cars a year then even these tiny numbers mean there will be hundreds of failures in the field, unfortunately these make good stories. Manufacturers hate even these small numbers of faults, obviously every company’s dream is to have no failures at all, and indeed some models achieve this, and they are all striving to eradicate all potential for failure. But occasionally I think its a bit sad you will never see a headline reading ‘millions of car turned out to be pretty good actually’.
Even a very high powered Porsche can be safely driven sideways in the rain by an idiot driver, as shown here.

Cars are amazing.
Here’s a challenge for you; think of a machine that has to work in heavy rain, baking sun, snow, ice, deserts, be precise on tarmac yet still cope with cobble stones, Suffer grit and gravel being blasted at it from underneath and do a huge range of complex mechanical tasks at temperatures between -40 to +50 C, last over a decade whilst being shaken, accelerated, decelerated by novice users in a crowded and complex environment.
There are no other machines, just motor vehicles, which have to contend with all this.
But it doesn’t stop there, the engine is retuned every combustion cycle, hundreds of times each second in order to meet the incredibly stringent emissions laws, pollutants are measured in parts per million, the tests are so sensitive that simply exhaling into an emissions test machine would cause the limits to be exceeded (note; these are not the simple emissions testers used at MOT stations, the MOT emissions limits are laughably lax by comparison to the certification tests the manufacturer has to do).
To give you a very rough idea of the amazing computing power needed to control and engine to these limits, a modern engine control box (ECU) may have around 25 thousand variables, tables, maps and functions. It calculates mathematical models of how the air flows through the intake system, how the pistons and valves heat up and how the catalysts is performing, it analyses the subtle acceleration and deceleration of the flywheel every time a cylinder fires, it listens to the noise the cylinder block makes and filters the sound to decide if the engine has the slightest amount of knock (in fact some engine deliberately run the engine into borderline detonation to extract maximum efficiency). It talks to the gearbox to anticipate gear changes and control torque so that the gearbox ECU can precisely control the energy input into the drive line during a gear shift. It analyses the long and short term behaviour of every single sensor and actuator to automatically compensate for ageing and wear as well as diagnosing and compensating for any faults.
But it doesn’t stop there, on some cars the suspension analyses the road and adapts to suit, the auto gearbox monitors the drivers ‘style’ and changes the way it works to please them. The brakes check wheel speed thousands of times a second and deduce when a tyre is about to skid, not when it already has started skidding, and relieve brake pressure just before it happens to ensure the tyre provides maximum grip and stability.
The climate control breathes in cabin air through tiny aspirated temperature sensors and adjusts valves and flaps to discretely meet your comfort needs. The stereo selects a nearby station as you drive along and seamlessly switches in so you never have to retune in order to continue to listen to Radio 2 on long journeys. All sorts of things are controlled and monitored from fuel pumps to light bulbs.
This is the engine and gearbox control from a 20 year old Jaguar, since then it has got a whole lot more complicated!

All in all an average family car might have between five and ten computers working together, sharing information and jointly controlling the car, a typical example would be the ABS unit supplying road speed info to the gearbox so it knows what gear to select. Luxury cars can have over 50 different computers, even the seat heaters have self diagnosing control brains in and talk to the car on a serial bus, and they all interact with things like the battery management systems which may at any time request all these systems change the way they are operating in order to cope with some adverse situation.
The way these systems work together can be very complex, for instance stability control uses the ABS system to apply brakes on individual wheels in order to pull the car to one side as well as requesting a certain wheel torque to ensure the car goes in the desired direction, this torque is controlled by the gearbox and engine working together too, the engine can react almost instantaneously by altering the spark angle (these events happen so fast that the engine has to wait for the airflow to reduce going into each cylinder even though it moves the throttle immediately, because of the air’s inertia!).
Components have to operate faultlessly for millions of cycles, if an engine or drive-line fault develops then the systems must identify it, adjust the mode of operation to minimise risk to car and people, and alert the driver, just like having an expert mechanic on board.
In addition the car has to be comfy by isolating key frequencies from being transmitted by the suspension and engine mounting systems, prevent wind noise from the gale force breeze rushing past the shell, stop the metal box that makes the cabin sounding like a metal box and muffle the many kilowatts of noise running through the exhaust pipe.
It also has to be economical, using every drop of fuel sparingly, compromising the shape of the car itself to reduce drag whilst still allowing enough space to get everything in and have enough air flow round the hot bits to stop them degrading.
But as well as being frugal it also has to perform well, even a modest family hatchback these days has the performance of a race car from the ’60s, indeed there are many saloons with well over 500bhp now, compare this with the 1983 F1 race winning Tyrrell with 530 bhp. Yes our super comfy mobile entertainment centres have the performance of an older Formula 1 car.
And not only does it have to balance all these driving related tasks but it also has to have a really good sound system and have most of the comforts of home, some even have cup holders and fridges.
A few decades ago an Engineer could just look at a car, such as this ultra rare Lagonda V12, and understand how it worked. How times have changed.

Not even the Space Shuttle has to contend with this level of sophistication. I can’t see rockets running catalytic converters and exhaust mufflers any day soon.
And here is the kicker; as well as coping with all that, it also has to perform special functions in a crash. We have multiple air bags, who’s operation is tuned to the ‘type’ of crash detected, we have automatic engine cut, hazard indication, seatbelt pre-tensioning and some cars even ring for help. The structure is designed and tested to ensure it collapses in a controlled manner, the engine design is constrained by pedestrian head impact tests on the bonnet, even the steering wheel is designed to steadfastly hold its position as the cars structure a few feet in front of it is crushed at a rate of up to 15 meters per second.
Name me one other machine that has to detect, reliably, when it is about to be destroyed and then deploy safety mechanisms in a controlled and measured manner during the actual process of its own destruction. You’ll struggle with that one.
Now this feat of engineering would be amazing even with an unlimited budget, but the fact is that cars are made as cheaply as possible, which just take the achievement from amazing to utterly astonishing. In fact you can buy a basic car for the price of a really good telly, that’s bonkers.

Please take a few moments to look at your own car, and marvel. And if one part goes wrong by all means take it back and get it fixed, but do try to be sympathetic to the scale of the problem engineers face.

The road ahead is challenging, but also very exciting as Engineers turn dreams into reality.

Post Script:

Media hype
I noticed something interesting during the Toyota recall, the media could have played a very useful role and helped society, I say ‘could have’ because what they actually did was the complete opposite.
What they could have done is reported actual news, facts presented objectively such as ‘a small numbers of cars may have a fault causing the pedal to be stiff’. That is a fact, it gets the info over simply and effectively, you know what is being said. Simple.
They could have gone further and said something like ‘if your pedal feels stiff visit your dealer, but first check the floor mat hasn’t got stuck under the pedal’. That would be helpful.
But they didn’t do that.
No, what actually got reported was along the lines of ‘mum of five in death plunge tragedy’ and ‘is your car a ticking time bomb of doom?’. Stupid, dramatised gossip that conveys absolutely no useful information.
But of course this scaremongering helps to boost sales of that form of media bilge, so expect more useless crap in the future about every important storey going.
And this is a real problem, not only because it leaves us all badly informed and scared, but because the car companies now know that being honest and open has become the wrong thing to do.
All media has a responsibility, and its time they (we) faced up to it.

My rant about our car industry.

The media has given UK industry a bit of a battering in the last few years, in fact ever since the high profile industrial collapses in the 70’s the media dwells on doom and gloom stories rather than all the good news that the industrial sector has consistently produced.

UK industry makes some world leading products including damn fast cars.

I was talking to a bloke last weekend at an arts festival, he was an ordinary chap who happened to have no real interest in cars but as he knew I am a motoring journalist he made conversation by asking what car I would recommend. Being very proud of the UK car industry I immediately replied ‘any car as long as its made in Britain’, he looked quite astonished and said ‘I didn’t think there were any cars still made here’!
This shocked me, the UK makes over 1.5 million cars a year with factories churning out products from Jaguar, Land Rover, Lotus, Toyota, Morgan, Ford, Vauxhall, Rolls Royce, Nissan, Honda, Bentley and BMW to name but a few. About 75% of these are exported bringing in over £25bn to the UK, globally British skills, both in manufacturing and engineering design are recognised as being world class which attracts investment and creates jobs. But we very rarely hear anything about this on the news, in fact when Lotus dropped a few hundred jobs last year it made
Yes, it's designed and built here, be proud.
national news, but when Jaguar recruited about 3500 this year there is no national coverage, I find this very frustrating and also more than a little suspicious.
I am sure the fact that most of the big media organisations are tied up with the financial sector has absolutely no influence on their bias, but it is remarkable how even the phraseology favours the ‘markets’ at the expense of industry. For instance take a look at exchange rates, to sell things we make abroad we need the pound to be cheap and affordable, but the media call this situation a ‘weak’ pound. But when the pound is expensive and unaffordable, which crushes export sales, reduces production and leads to job losses, they refer to that situation as a ‘strong’ pound. Its ridiculous, until you look at the financial sector who benefit greatly when the pound is expensive, and suffer when its cheap.
The car that's seen it all, 60 years has seen UK industry go from world dominance through near colaps in the 70s and now back to global strength.

And the whole idea of being ruled by a stock market that panics like a frightened weasel, moving their money from one company to another, taking support away when its most needed, is utterly ludicrous. A system where a few chaps in blazers in London transfer money when they see their bonuses start to drop, causing a hard working company many miles away to loose several jobs even though they have a full order book, must surely be immoral?
So you might argue that as there are so many people now working in the financial sector that it balances out, when money is tight in industry it must be flowing in the financial sector? Well maybe it does, but the thing I notice is the difference in the way that money is distributed.
I read a report a while ago comparing average wages, I think it said something like average car industry wages were 25k and finance was 36k, or something like that. But the distribution of those wages is dramatically different, many people I have met who work in the city earn less than 20k, normal average office workers, many earn less than 18k and really struggle to pay the bills. The equivalent in the car industry might be factory line workers who earn a basic of about 25k and with usual overtime could be on 35 to 40k, thus allowing them more spare cash to pump back into the economy.
Toys for the super rich bring wages to British workers

By comparison at the top end of the pay scale things are the other way around, senior managers in the car industry might be on 60k, but their counterpart in finance may be on double that. At director level the difference is even greater, there are no million pound bonuses in the car industry, no seven figure salaries, and all the better for it.
There are two results of this, firstly the car industry benefits more of its employees, the wages are more evenly distributed across the whole workforce and more of the cash finds its way into the local economy. But secondly the car industry is much less appealing to the super rich, the rewards are slimmer for directors, and for investors the dividends are modest.
From Derbyshire to the Dakar rally, the best driven by engineering skill and real passion.

Over the decades the press has made industry seem grubby and declining which has damaged its image severely, now UK industry is struggling to recruit the people it needs for continued growth because generations of young workers have been put off by the media image, preferring the relative ‘glamour’ of finance.
Career choice at an early age obviously shapes the subjects kids study at school and the exams they take at the end. The media bias has driven huge numbers to study softer subjects, and whilst I have absolutely no objection to anyone taking these subjects we desperately need to rekindle the enthusiasm for learning how to make things, how to design and engineer things, how to turn dreams into tangible working products that people can buy. This mismatch of candidate’s skills and job requirements, coupled with the apathy toward industrial work puts the country in the ridiculous position of having a large pool of unemployed youngsters and an industry being forced to recruit from abroad.
Yours truely helping to turn road cars into race cars, something this country is rather good at.

This situation has to change, the notion that an economy can run on the service and financial sectors alone is clearly flawed, how can a country prosper when all it does is sell someone else’s products to its own populous?
Also the idea that we can be solely a ‘knowledge’ economy, where we design stuff but make it elsewhere is idiotic. All that happens is the detailed knowledge of a product gained by actually making it gradually migrates to the place where it is made, all the product knowledge seeps away until the manufacturing area has greater understanding and technical expertise than we do. Then what do we design? ‘For Sale’ signs maybe.
F1 companies employ thousands in the UK, would you seriousely rather have a desk job in the city?

I don’t know what the solution is, but do I know that what I see around me is terribly unfair and inefficient, like a misfiring engine it sort of works some times but keeps stalling at junctions. I think its time this country had a new engine, one driven by selling world class products globally, building real skills and doing useful jobs that benefit everyone.
The world has changed dramatically in the last few years, it is a truly global market place with massive opportunities. It is still in a state of change, but everything is starting to settle in, global players are establishing bases across the world, making networks and building brands that people in every country recognise and desire.
This phase is absolutely critical to long term success, if we miss the opportunities now someone else will definitely take them away. Now is the time to build our industry, just as it is in every country, to make it fit for the new market place. We are already leading in many areas such as luxury cars and motorsport, everyone who cares about the future should push the government to give all our industries a fighting chance by moving red tape, developing a tax system that promotes growth, investing in education and promoting our industry across the globe.
But let’s start by promoting our excellent industry to ourselves, spread the word.
UK built electric Rolls Royce shows the way ahead, lets build thease advanced skills into new industry.

Here are some links with more info:

http://www.guardian.co.uk/news/datablog/2011/apr/14/uk-car-production-manufacturing-data-2011